
Writing a fuzzer using the Fuzzled framework

Tim Brown

February 24, 2008

<mailto:timb@nth-dimension.org.uk>
<http://www.nth-dimension.org.uk> / <http://www.machine.org.uk>

Abstract

Fuzzled is a powerful fuzzing framework. Fuzzled includes helper functions, namespaces, fac-
tories which allow a wide variety of fuzzing tools to be developed. Fuzzled comes with several
example protocols and drivers for them. The aim of this paper is to document a practical process
for using the framework to find new vulnerabilities.

1 Technical Details

1. Protocol fundamentals

The first task in developing a fuzzer using the Fuzzled framework is to get a fundamental
understanding for the protocol you’re attempting to fuzz. It’s fair to say that there are a
number of sources that can prove beneficial in this regard. These include:

(a) Documentation
Nothing beats an RFC in this regard, especially since they often include BNF specifica-
tions for how the protocol is intended to be implemented. For example, this is a snippet
from the RFC for IRC[1].

<message> ::= [’:’ <prefix> <SPACE>] <command> <params> <crlf>
<prefix> ::= <servername> | <nick> [’!’ <user>] [’@’ <host>]
<command> ::= <letter> { <letter> } | <number> <number> <number>
<SPACE> ::= ’ ’ { ’ ’ }
<params> ::= <SPACE> [’:’ <trailing> | <middle> <params>]
<middle> ::= <Any *non-empty* sequence of octets not including
SPACE or NUL or CR or LF, the first of which may not be ’:’>
<trailing> ::= <Any, possibly *empty*, sequence of octets not
including NUL or CR or LF>
<crlf> ::= CR LF

As you can see, the BNF specification define a message as been a sequence of subblocks.
We could use this later on when we’re defining our base cases. Just remember though
that these only define how the protocol is meant to behave and we’re looking primarily
for deviations since these are a good source of vulnerabilities.
Of course, RFCs aren’t the only source of documentation about a protocol. You might
also find documentation in SDKs or technical literature on the vendors web site. Hell,
there may even have been other researchers who have published work on the protocol.
In any event, documentation is definately the first place to look when you’re trying to
understand a new protocol.

1

(b) Observation
So after devouring any documentation available, is it time to go find some vulnerabilities?
For me, the next step is to observe the target. I’ll go grab a copy of the application and
fire it up on a test system. Sometimes I’ll use a virtual machine and sometimes, I’ll need
the real thing. It’s useful to have a good selection of hardware and OS to choose from
here since the really interesting stuff often only runs on the more obscure platforms, but
VMware and a raft of virtual machines is a good starting point.
Anyway, once I have it up and running I’ll monitor it in typical usage, I’ll make use of
the vendor supplied client tools as well as tools for observation such as packet sniffers,
debuggers, function tracers and file monitors. You can’t really find vulnerabilities unless
you have some idea about the expected behaviour of the application after all, especially
if the application extends an existing protocol in a proprietry manner.
Of particular interest here is the cause and effect of event you observed. How does super-
whizzy-HR-application client authenticate when you enter your password? Does it use
repeatable byte sequences to query its server component? Are any characters encoded
before sending?

(c) Static analysis
Finally, I’ll normally try a little static analysis of the binaries based on what I’m gleaned
so far. I’m a lousy excuse for a reverse engineer, so I normally limit myself to tools that
process the binaries in some manner. What libraries does the application use? Does
it use any functions that might lead to security flaws, can I find the command strings
embedded in the binary? Are there any strings I haven’t seen yet? Are there any odd
strings? For example, I initially identified the existence of a heap overflow in Visionsoft
Audit[2] by using the strings tool to locate commands I’d already observed on the wire
and in so doing found the hidden (and vulnerable) LOG command.

2. Building a base request

Once you’ve got an idea how the protocol works, it’s time to generate some base requests.
In the most simple case this can be a simple string, but for more complex cases (particularly
where the protocol is in binary), it is often find it easier read it in directly from a previous
packet capture. You might even choose not to start with a base request at all, and simply
define the entire request using factories. As an aside, Fuzzled::Protocol::HTTPInject does
the former (reads from WebScarab logs), whilst Fuzzled::Protocol::SOCKS4 does the latter
(defines the full request using factories).

3. Using namespaces

You also need to figure out which elements of the base requests you wish to fuzz. Essentially,
you need to consider how the developer is likely to parse your base request and then out guess
them. Obviously not all classes of vulnerability are applicable to any given application so
you’ll also need to consider how the application has been developed and what technologies it
makes use of. Some obvious things to consider:

• Buffer overflows

• Integer overflows

• Format strings

• Parsing bugs

• Timing attacks

• Information disclosure

• Null pointers

• SQL injection

• Javascript injection

2

• LDAP injection

Fuzzled has namespaces geared to help you identify all of the above.

Essentially, Fuzzled’s namespaces come with a generate() function which returns an array of
strings that relate to a given namespace. Typically, you should then use the
Fuzzled::Factory::BruteForce factory to iterate through the array, using each string in
turn to construct futher more complex strings with which to fuzz the application.

4. Introducing Forker

Fuzzled 2.0 marks the introduction of Fuzzled::Helper::Forker base class from which all
protocols are derived. Drivers call the manager() derived from the Forker base class to
start a fuzzing session. This in turn calls produce() and consume() from the fuzzer con-
cerned to handle the actual production and consumption of request strings. In the case of
the Fuzzled::Protocol::HTTPFormsAuthenticate->produce() function for example, it calls
queue() from the Forker base class to place these request strings in to the shared memory
pools.

5. Putting it all together with factories

Fundamentally, a protocol fuzzer written using the Fuzzled framework is simply a set of nested
loops, which iterate through generating each of the test cases for a given factory. So lets look
at a real world example of how this works:

$requeststring = "HEAD / HTTP/1.0\n";
$requeststring = $requeststring . "Host: " . $self->{’hostname’} . ":" .
$self->{’portnumber’} . "\n";
$requeststring = $requeststring . "User-Agent: Mozilla/5.0 (compatible; HTTP)\n";
$requeststring = $requeststring . "\n";
$overflowhandle = Fuzzled::Factory::Repeat->new("A", 0, 4096);
while ($overflowstring = $overflowhandle->generate()) {
$fullrequesthandle = Fuzzled::Factory::Replace->new($requeststring, [["HEAD", ""],

[" /", " /"], ["Host: " . $self->{’hostname’} . ":" .
$self->{’portnumber’}, "Host: "], ["User-Agent: Mozilla/5.0 \\\(compatible;
HTTP\\\)", ""], ["Mozilla/5.0 \\\(compatible; HTTP\\\)", ""]], $overflowstring);

while ($fullrequeststring = $fullrequesthandle->generate()) {
$self->queue($fullrequeststring);
}
}

(a) The base request
Here, we’re looking a section of code designed to fuzz the HEAD method for potential
overflows. Since this is a fairly trivial request, I’ve defined base request in the code inline:

"HEAD / HTTP/1.0\n"
"Host: " . $self->{’hostname’} . ":" . $self->{’portnumber’} . "\n";
"User-Agent: Mozilla/5.0 (compatible; HTTP)\n";
"\n";

(b) Creating the full request
First we create an instance of the Fuzzled::Factory::Repeat factory. This factory will
repeat the initial string in ever decrementing quantities. In this case, the first call to
generate() will return the string "A"x4096 whilst the last call will return an empty

3

string. Next we create an instance of a second factory Fuzzled::Factory::Replace.
This factory essentially takes an initial string, an array of target strings and a string to
replace the targets with. Each call to generate() here, will lead to a different target
string being replaced,the first call resulting in "HEAD" being replaced whilst the last call
will result in "Mozilla/5.0 (compatible; HTTP)" being replaced.
There are also number of other factories available including:

• Fuzzled::Factory::BruteForce

• Fuzzled::Factory::Increment

• Fuzzled::Factory::Pattern

• Fuzzled::Factory::Date

• Fuzzled::Factory::Pad

Which allow various manipulations of the request, all of which should be self explanatory
and of course there is nothing to stop you writing your own.

(c) Threading
Most of the fuzzers I write with the Fuzzled framework are multi-threaded, consisting of
a producer thread and multiple consumer threads. This makes use of
Fuzzled::Helper::SharedMemory to allow the various threads to communicate with each
other, although in Fuzzled 2.0, the use of the Fuzzled::Helper::Forker abstracts this
process for us. There’s no particular reason for this and indeed there may be occasions
where you want to write single threaded fuzzers. Fuzzled does nothing to prevent this.

6. Fuzzled tricks of the trade

(a) Fuzzled::Factory::Pattern

The Fuzzled::Factory::Pattern factory was inspired by Rex::Text.pattern_create
in Metasploit. It allows patterns of arbitrary length to be created whilst avoiding so
called bad characters. The aim of the factory is to speed up the process of identify-
ing offsets, particularly in the creating of buffer overflow style attacks. It does this by
seeding the random number generator based on the length of string required and then
generating a string within the constraints specified. It can be a useful alternative to
Fuzzled::Factory::Repeat although obviously you need to be aware of any special
characters which might inhibit its use. The obvious case of a bad character is \x00 but
there are doubtless others, depending on the protocol being fuzzed.

(b) Fuzzled::PacketParse::Separate

Packet parsers are designed to break packets down into more meaningful components.
Fuzzled::PacketParse::Separate is the first such packet parser. It is designed to break
down packets into more meaningful components based on commonly used separators.
By breaking packets down like this, particularly where binary protocols are in used, it
may become easier to see the structure of the packets exposing the types and lengths of
elements with the packet. This should allow more meaningful fuzzing to occur.

7. Using Fuzzled::Protocol::Generic

Another new feature in Fuzzled 2.0 is Fuzzled::Protocol::Generic. This protocol doesn’t
in itself target a specific service but rather allows the definition on further protocols using an
XML schema. This introduces Fuzzled’s first dependency, on XML::Simple, but I think you’ll
find it’s worth it.

Let’s start by looking at an example protocol definition marked up using
Fuzzled::Protocol::Generic’s schema.

<fuzzled start="user">

4

<send name="user">
<request marker="{FUZZ}" default="anonymous" prefix="" postfix="">

<startstring>USER {FUZZ}\r\n</startstring>
</request>
<check type="buffer"/>
<success goto="password">

<pattern>^(331)(.*)</pattern>
</success>

</send>
<send name="password">

<request marker="{FUZZ}" default="test@example.com" prefix=""
postfix="">

<startstring>PASS {FUZZ}\r\n</startstring>
</request>
<check type="buffer"/>
<success>

<pattern>^(530)(.*)</pattern>
</success>

</send>
</fuzzled>

Line 1 opens the definition and specifies which send requests should be considered starting
points for Fuzzled. In this case, there is just one, user, but other protocol definitions may
list further starting points, separated by commas. Fuzzled will use each starting point in turn
as a basis for a simple state machine. Looking at the user send request, you will see that it
defines a request, a check and a success. Lets look at them in turn. Line 3 starts a request. We
give a default value, a marker which indicates where our malicious data should be placed, as
well as prefixes and postfixes for the malicious data. Line 4 defines the request to be sent.
Nothing will be read by the protocol until a full manipulated request has been sent. Line 6
specifies the kind of check we wish to carry out. For now only buffer is supported but this
will likely change in future releases. For the record this causes the protocol to replace the
marker with each of "A"x4096, "" and the default. Finally, lines 7 and 8 handle success
cases. The use of goto indicates that in the event that pattern is matched in response to
the request that a second send request named password should then be sent, without tearing
down the connection. When a goto is triggered, the protocol will move straight to the next
sendrequest. It will only return if a success case fails or if all further child send requests are
completed.

As a comparison, let’s look at another defintion:

<fuzzled start="get, hostname">
<send name="get">

<request marker="{FUZZ}" default="" prefix="/" postfix="">
<startstring>GET {FUZZ} HTTP/1.0\r\nConnection:
Keep-Alive\r\n\r\n</startstring>

</request>
<check type="buffer"/>
<success goto="hostname">

<pattern>^(HTTP/1.1) ([\d]{3})(.*)</pattern>
</success>

</send>
<send name="hostname">

<request marker="{FUZZ}" default="{HOSTNAME}:{PORTNUMBER}"

5

prefix="" postfix="">
<startstring>GET / HTTP/1.1\r\nHostname: {FUZZ}\r\n
Connection: Keep-Alive\r\n\r\n</startstring>

</request>
<check type="buffer"/>
<success>

<pattern>^(HTTP/1.1) ([\d]{3})(.*)</pattern>
</success>

</send>
</fuzzled>

Note the difference on line 1. This protocol definition has two send request that should be
considered starting points for fuzzing. The protocol will send get, get and hostname and
hostname send requests depending on the response it recieves from each check:

Start of get send requests:

GET / HTTP/1.0
Connection: Keep-Alive
GET / HTTP/1.1
Hostname: 127.0.0.1:80
Connection: Keep-Alive
GET / HTTP/1.1
Hostname:
Connection: Keep-Alive
GET / HTTP/1.1
Hostname: AAAAAAAAAA
Connection: Keep-Alive
GET / HTTP/1.0
Connection: Keep-Alive
GET / HTTP/1.1
Hostname: 127.0.0.1:80
Connection: Keep-Alive
GET / HTTP/1.1
Hostname:
Connection: Keep-Alive
GET / HTTP/1.1
Hostname: AAAAAAAAAA
Connection: Keep-Alive
GET /AAAAAAAAAA HTTP/1.0
Connection: Keep-Alive
GET / HTTP/1.1
Hostname: 127.0.0.1:80
Connection: Keep-Alive
GET / HTTP/1.1
Hostname:
Connection: Keep-Alive
GET / HTTP/1.1
Hostname: AAAAAAAAAA
Connection: Keep-Alive

Start of hostname send requests:

6

GET / HTTP/1.1
Hostname: 127.0.0.1:80
Connection: Keep-Alive
GET / HTTP/1.1
Hostname:
Connection: Keep-Alive
GET / HTTP/1.1
Hostname: AAAAAAAAAA
Connection: Keep-Alive

We could disable the inclusion of the child hostname send requests by get by removing the
goto directive on line 7.

8. Monitoring for vulnerabilities

Ah yes, vulnerabilities, that’s why you’re playing with Fuzzled after all. I tend to make use of
a number of techniques to monitor for vulnerabilities thrown up by the fuzzers.

(a) Inline code
Sometimes the easist way to spot a vulnerability is simply to include inline code to parse
the responses. This seems to work best for cases where there is an expected behaviour.
For example, I used this approach in Fuzzled::Protocol::HTTPDirBuster where I was
expecting a 404 response code to be returned by the web server for each of my requests.
Using a regular expression, I was quickly able to confirm that this was the case for each
of my requests.

(b) Logging the input/output
This is better where the expected response from the application is undefined, but where
you are assured of getting a response one way or another. Fuzzled includes a logging
function within Fuzzled::Helper which Fuzzled::Protocol::HTTPInject makes use
of. Essentially, for this fuzzer (which fuzzes based on WebScarab logs), my injections (the
modified parts of my full requests) include a marker and both the input and output is
logged. At the end of a run, I can grep the logs to see how the application behaved in
response to my injections.

(c) Monitoring the application
This essentially takes the same form as observation during the Protocol fundamentals
stage of writing a fuzzer, since you’re now actively probing the application in a non
standard manner, you may well learn more about how the application and the protocol
it implements responds to unexpected input. For example, I’ll run a packet sniffer when
I fuzz binary protocols since they give me a chance to review responses in another form
which may mean I spot something I would have otherwise missed.

2 Changes

0.0.0-1.1.0 Updated with details of Fuzzled 2.0
0.0.0-1.0.0 First published

References

[1] http://www.faqs.org/rfcs/rfc1459.html

[2] http://www.securityfocus.com/bid/25153/

7

